A Bayesian Approach to Estimation of Speaker Normalization Parameters

نویسندگان

  • Dhananjay Ram
  • Debasis Kundu
  • Rajesh M. Hegde
چکیده

In this work, a Bayesian approach to speaker normalization is proposed to compensate for the degradation in performance of a speaker independent speech recognition system. The speaker normalization method proposed herein uses the technique of vocal tract length normalization (VTLN). The VTLN parameters are estimated using a novel Bayesian approach which utilizes the Gibbs sampler, a special type of Markov Chain Monte Carlo method. Additionally the hyperparameters are estimated using maximum likelihood approach. This model is used assuming that human vocal tract can be modeled as a tube of uniform cross section. It captures the variation in length of the vocal tract of different speakers more effectively, than the linear model used in literature. The work has also investigated different methods like minimization of Mean Square Error (MSE) and Mean Absolute Error (MAE) for the estimation of VTLN parameters. Both single pass and two pass approaches are then used to build a VTLN based speech recognizer. Experimental results on recognition of vowels and Hindi phrases from a medium vocabulary indicate that the Bayesian method improves the performance by a considerable margin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the Performance of Bayesian Estimation Methods in Estimations of Shift Point and Comparison with MLE Approach

A Bayesian analysis is used to detect a change-point in a sequence of independent random variables from exponential distributions. In This paper, we try to estimate change point which occurs in any sequence of independent exponential observations. The Bayes estimators are derived for change point, the rate of exponential distribution before shift and the rate of exponential distribution after s...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Speaker Adaptation in Continuous Speech Recognition Using MLLR-Based MAP Estimation

A variety of methods are used for speaker adaptation in speech recognition. In some techniques, such as MAP estimation, only the models with available training data are updated. Hence, large amounts of training data are required in order to have significant recognition improvements. In some others, such as MLLR, where several general transformations are applied to model clusters, the results ar...

متن کامل

Estimation of genetic parameters of litter size in Moghani sheep using threshold model via Bayesian approach

This study was conducted to estimate the genetic parameters of litter size (LS) in Moghani sheep using threshold model via Bayesian approach. The data originated from the Jafar-Abad Station of Ardabil province, Iran, and included 9698 lactation records of 4977 ewes with lambings from 1995 until 2010. The pedigree file consisted of data on animals born from 1987 to 2010. The significance of fixe...

متن کامل

Bayesian bpproach based decision in speaker verification

Considering Bayesian decision framework applied in the context of speaker verification, this paper presents a new way of handling troublesome anti-speaker model by proposing a redefinition of hypotheses involved in the classical statistical hypothesis test. This new definition of hypotheses is then implemented through a speaker independent normalization technique, named MAP approach. Besides su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1610.05948  شماره 

صفحات  -

تاریخ انتشار 2016